1

TABLE I SPECTRAL DATA FOR $Co(L-hist)_2 \cdot H_2O$

Polarizn of electric vector	ν _{max} (80°K), ^α kK	Excited state	Allowing vibration
$\boldsymbol{x}(\boldsymbol{b})$	10.0	${}^{4}A_{1}({}^{4}T_{2g}({}^{4}F))$	
	19.3	$^{2}A_{2}(^{2}T_{2g}(^{2}G))$	
	19.6	$^{2}A_{2}(^{2}T_{2g}(^{2}G) + \nu$	
	19.8	$^{2}A_{2}(^{2}T_{2g}(^{2}G) + 2\nu)$	
·	20.8	${}^{4}A_{2}({}^{4}T_{1g}({}^{4}P))$	α_2
	$22.4 \mathrm{sh}$	${}^{4}\mathrm{B}_{1}({}^{4}\mathrm{A}_{2g}({}^{4}\mathrm{F}))$	β_1
y (a)	10.3	⁴ A ₂	
	13 .0	$^{2}A_{2}(^{2}T_{1g}(^{2}G))$	
	16.1	$^{2}A_{2}(^{2}T_{2g}(^{2}G))$	
	$18.7 \mathrm{sh}$	${}^{4}\mathrm{B}_{1}({}^{4}\mathrm{T}_{1g}({}^{4}\mathrm{P}))$	β_2
	19.3	$^{2}A_{2}$	
	19.6	$^{2}A_{2} + \nu$	
	19.8	${}^{2}A_{2} + 2\nu$	
	20.8	⁴ A ₂	
	22.3	⁴ B ₁	β_2
z (c)	11.4	⁴ B ₂ (?)	
	18.7	⁴ B ₁	
	20.8 sh	⁴ A ₂	β_2
	22.4	⁴ B ₁	

^a Numbers in italics indicate major spin-allowed, symmetryallowed bands; sh = shoulder.

In this work we have illustrated how polarized crystal spectra may be used in conjunction with circular dichroism to assign spectral transitions in low-symmetry complexes of cobalt(II). Further spectral and magnetic work is in progress in our laboratory on other cobalt(II)-histidine complexes which will be reported at a later date.

Acknowledgment.—This work was supported in part by a grant from the National Science Foundation (No. GP8756) for the purchase of the JASCO ORD-CD-UV-5 instrument and from the Duke University Biomedical Sciences Support Grant for purchase of the Cary 1402. P. L. M. acknowledges also fellowships from the Shell Oil Co. The authors thank Professor M. M. Harding for the availability of crystallographic results prior to publication.

Contribution from the Department of Chemistry, Northeastern University, Boston, Massachusetts 02115

Preparation of Pure Difluorophosphoric Acid and μ -Oxo-bis(phosphoryl difluoride)

BY PETER A. BERNSTEIN, FREDERICK A. HOHORST, MAX EISENBERG, AND DARRYL D. DESMARTEAU*

Received November 9, 1970

Free difluorophosphoric acid, HOPOF₂, was first observed by Tarbutton¹ and was later prepared by Lange.² Various laboratory methods for the preparation of HOPOF₂ are available³ but since the acid is sold commercially, few investigators would choose to make it. The acid is made commercially by reaction of HF with P_4O_{10} ,⁴ and the product is usually quite impure as received from various suppliers. Purification of the acid by distillation is difficult and we have found that treatment of the impure acid with excess P_4O_{10} at 0° offers a convenient one-step purification.

 μ -Oxo-bis(phosphoryl difluoride), P₂O₃F₄, the anhydride of HOPOF₂ was first isolated by Wannagat⁵ from the reaction of PF₃ and O₂ in an electrical discharge. Later, Robinson⁶ prepared the compound by dehydration of HOPOF₂ with P₄O₁₀. The latter method while easy to carry out always gives a product contaminated with HOPOF₂. Fractional distillation gives a reasonably pure product but complete separation from HOPOF₂ is very difficult. We have found that P₂O₃F₄ can be obtained pure in high yield from the photolysis of POF₂Br with excess oxygen. The POF₂Br is in turn readily obtained pure from the reaction of HOPOF₂ with PBr₅.⁷

Experimental Section

General Information.—All manipulations of volatile compounds were carried out in a Pyrex vacuum system equipped with glass—Teflon valves. Pressures were measured using a Wallace and Tiernan differential pressure gauge. The vapor pressure of HOPOF₂ was obtained by the method of Kellogg and Cady⁸ and that of $P_2O_3F_4$ was obtained by a static method employing the isoteniscope principle.⁹

Infrared spectra were obtained on a Beckman IR10 using a 10-cm glass cell fitted with silver chloride windows. Fluorine nmr were taken on a Varian A-56-60 using CFCl₃ as an external reference. Proton nmr were obtained on a Varian A-60 using tetramethylsilane as an external reference.

Reagents.—Difluorophosphoric acid was obtained from Alfa Inorganics. All other materials were reagent grade and were used without further purification.

Purification of HOPOF₂.—Impure difluorophosphoric acid (86 g) was cooled to 0° and added to P₄O₁₀ (38 g) in a 250-ml bulb cooled in an ice bath. The mixture was allowed to stand for 1 hr at 0° with intermittent shaking. Pure HOPOF₂ was then collected by pumping on the mixture held at 0° through a -78° trap. After several hours 32 g of HOPOF₂ was collected corresponding to a 37% yield; bp 116.5°; mp -93.1 to -91.8°; mol wt 270, calcd mol wt 101.97; nmr: δ 86.2 (d, PF), δ -13.3 (s, P-OH), $J_{\rm PF}$ = +992 Hz; $\Delta H_{\rm vap}$ = 7.51 kcal/mol; $\Delta S_{\rm vap}$ = 19.3 eu. Values of the vapor pressure as a function of temperature are as follows [P (mm), t°C]: 20.1, 17.0; 41.0, 30.4; 55.5, 93.2; 502.3, 100.4. The data follow the equation

$$\log [P (mm)] = 6.1324 - 891.69/T - 14622/T^{2}$$

The material passing through a -78° trap was found by infrared analysis to contain POF₃ and small amounts of HOPOF₂ and SiF₄. The material remaining in the bulb was a very viscous liquid and no effort was made to identify any of the products present.

Preparation of P₂O₃F₄.— μ -Oxo-bis(phosphoryl difluoride) was prepared by photolysis of POF₂Br with excess O₂ using an immersion lamp with a 2.5-W output at 2537 Å. Difluorophosphoryl bromide was prepared by the reaction of HOPOF₂ (29.0 mmol), PBr₃ (29.5 mmol), and Br₂ (29.7 mmol) in a 250-ml glass bulb for 2 days at 100°. The bulb was fitted with a glass-Teflon valve and was well shielded while being heated. Reactions on a large scale (50 mmol of each reactant) have resulted in occasional breakage of the vessel from the pressure generated by the products. Pure POF₂Br was collected at -78° by pumping the reaction products through a -40° trap.

(5) U. Wannagat and R. Rademachers, Z. Anorg. Allg. Chem., 289, 66 (1957).

(6) E. A. Robinson, Can. J. Chem., 40, 1725 (1962).

(7) This method for the preparation of POF₂X compounds was first reported by D. D. DesMarteau, Ph.D. Thesis, University of Washington, Seattle, Wash., 1966. A similar but more extensive study was reported by H. W. Roesky, *Chem. Ber.*, 101, 636 (1968).

(8) K. B. Kellogg and G. H. Cady, J. Amer. Chem. Soc., 70, 3986 (1948).

(9) A. Smith and A. W. C. Menzies, ibid., 32, 897 (1910).

^{*} Address correspondence to this author at Department of Chemistry, Kansas State University, Manhattan, Kans. 66502.

⁽¹⁾ C. Tarbutton, E. P. Egan, Jr., and S. G. Frary, J. Amer. Chem. Soc., 68, 1782 (1941).

⁽²⁾ W. Lange and R. Livingston, *ibid.*, 72, 1280 (1950).

⁽³⁾ R. Schmutzler, Advan. Fluorine Chem., 5, 187 (1965).

⁽⁴⁾ L. C. Mosier and W. E. White, Ind. Eng. Chem., 43, 246 (1951).

 $\mathrm{POBr}_3,\,\mathrm{HBr},\,\mathrm{and}\,\mathrm{POF}_3$ and the reaction was essentially quantitative according to the equation

$$HOPOF_2 + PBr_5 \longrightarrow POBr_3 + HBr + POF_2Br$$

In some instances small amounts of Br_2 were present in the POF₂-Br. This was readily removed by shaking the POF₂Br for a few minutes with pure mercury. A small excess of PBr₅ is necessary to ensure complete reaction of HOPOF₂. The HOPOF₂ is difficult to separate completely from POF₂Br whereas excess PBr₅ is easily removed. The purity of POF₂Br was checked by infrared analysis¹⁰ and by vapor density (mol wt: found, 165.0; caled, 164.85).

In a typical preparation of $P_2O_3F_4$, POF_2Br (4.4 mmol) and O_2 (7.0 mmol) were added to a 550-ml bulb. The bulb fitted with the immersion lamp was predried by heating under high vacuum and treating with $P_2O_3F_4$. The mixture was then photolyzed for 5 hr. The brown color of bromine was evident after a few minutes. Separation of the products was carried out by pumping on the bulb through -78 and 196° traps. The -196° trap contained POF₃ and small amounts of Br₂. The -78° trap contained a mixture of $P_2O_3F_4$ and Br₂. The Br₂ was removed by shaking with dry mercury. The yield of $P_2O_3F_4$ was 2.0 mmol or 85% based on the equation

$$2POF_2Br + 0.5O_2 \xrightarrow{2537 \text{ Å}} P_2O_3F_4 + Br_2$$

An alternative method of purification which results in somewhat lower yields is first to condense out the products in a cold finger on the bulb. The bulb is then evacuated and while pumping on the vessel a -40° bath is placed around the cold finger. Pumping is continued until the brown color of Br₂ is no longer visible. The remaining material is then pure P2O3F4. This latter procedure has the advantage that fewer manipulations of $P_2O_3F_4$ are required and there is less chance of contaminating the very water-sensitive compound; bp 70.8° ; mp -1.0 to 0.0°; mol wt 186.0, calcd mol wt 185.93; nmr: δ 81.0 (d, m, PF), $J_{\rm PF} = 1048$ Hz; $\Delta H_{\rm vap} = 8.58$ kcal/mol; $\Delta S_{\rm vap} = 25.0$ eu. Values of the vapor pressure as a function of temperature are as follows [P (mm), t°C]: 38.4, 0.0; 57.4, 8.9; 75.9, 15.2; 114.4, 23.1; 150.5, 29.9; 210.4, 37.9; 283.9, 45.1; 338.0, 49.5; 404.2, 54.0; 490.8, 58.9; 595.5, 64.0; 713.1, 69.0. The data follow the equation

$$\log [P(mm)] = 9.9570 - 2991.0/T + 19186/T^2$$

Results and Discussion

The physical properties of HOPOF₂ obtained in this work agree fairly well with those reported by Lange² but disagree with the more recent data of Russian workers.¹¹ Values for $P_2O_3F_4$ are more scarce but our results agree reasonably well with those available.^{5,6} The infrared spectra of HOPOF₂ and $P_2O_3F_4$ are shown in Figures 1 and 2. The spectra are quite similar except

Figure 1.—Infrared spectrum of P₂O₃F₄ (4, 26 mm).

for the broad OH absorption in HOPOF₂ and the $\nu(P=0)$ which occurs at 1330 cm⁻¹ in HOPOF₂ and 1405 cm⁻¹ in P₂O₃F₄. The only reported infrared data

(10) Von A. Müller, E. Niecke, and O. Glemser, Z. Anorg. Allg. Chem., 350, 246 (1967).

(11) A. S. Lenski, A. D. Shaposhnikova, and A. S. Allilueva, Zh. Prikl. Khim., 35, 760 (1962).

Figure 2.—Infrared spectrum of HOPOF₂ (4, 27 mm).

for $P_2O_3F_4$ give a medium absorption at 1330 cm⁻¹ along with other weaker absorptions readily assigned to HOPOF₂.¹² Based on our inability to obtain $P_2O_3F_4$ completely free of HOPOF₂ by dehydration with P_4O_{10} , the assignments in the vibrational spectrum of $P_2O_3F_4^{6,12}$ should be reexamined. The observed molecular weight for HOPOF₂ indicates considerable association in the vapor phase and the broad, structured ν (OH) in the infrared spectrum of HOPOF₂ substantiates this.

Difluorophosphoric acid purified by our method can be stored for months in glass at 22° without appreciable decomposition. The purity of the acid is supported by the ¹⁹F and ¹H nmr as well as the infrared spectrum. No absorptions due to likely impurities such as (HO)2-POF, POF_3 , $P_2O_3F_4$, or SiF_4 could be observed. Over a 3-month period some POF₃ was formed and after transferring out the HOPOF₂ a small amount of a nonvolatile liquid was present. At 100° in glass, HOPOF₂ decomposes at a moderate rate to POF3 and a nonvolatile liquid which is probably (HO)₂POF. While we did not study this decomposition quantitatively, the following equation is reasonable for the very small amount of decomposition observed at 22° and the more rapid decomposition at 100°: 2HOPOF₂ \rightarrow POF₃ + (HO)₂-POF. This decomposition does not involve HF or H_2O as almost no SiF₄ is observed. In HOPOF₂ samples impure with H₂O and HF, glass attack is rapid and large amounts of SiF4 are formed. Since HOPOF2 can be prepared from POF_3 and $(HO)_2POF$, the observed decomposition indicates an equilibrium is involved with K_{eq} being very small at 22°: 2HOPOF₂ \rightleftharpoons POF₃ + $(HO)_2POF.$

The preparation of $P_2O_3F_4$ by photolysis of POF_2Br in the presence of oxygen may involve the formation of POF_2 radicals. Without oxygen the POF_2Br can be recovered essentially unchanged after being photolyzed for several hours. When O_2 is added, Br_2 is formed very rapidly, and if mercury is added instead of oxygen, $P_2O_2F_4$ is formed.¹³ It seems reasonable that the same intermediate is involved in both reactions. μ -Oxo-bis-(phosphoryl difluoride) was also obtained when POF_2 -Cl was photolyzed with oxygen. The reaction is, however, much slower with the chloride and useful yields could only be obtained by recycling unreacted POF_2Cl every few hours after removing the $P_2O_3F_4$ formed. Prolonged photolysis of $P_2O_3F_4$ forms POF_3 and a white solid presumed to be $(PO_2F)_n$.¹⁴

In order to obtain $P_2O_3F_4$ free of HOPOF₂, extremely anhydrous conditions are necessary. In our work we

- (12) T. L. Charlton and R. G. Cavell, Inorg. Chem., 9, 379 (1970).
- (13) D. D. DesMarteau, J. Amer. Chem. Soc., 91, 6211 (1969).

(14) D. W. Muenow, O. M. Uy, and J. L. Margrave, J. Inorg. Nucl. Chem., **31**, 3411 (1969).

Notes

found that conditioning of the glass vacuum system with crude $P_2O_3F_4$ obtained from dehydration of HOP-OF₂ was an effective means of drying the system. Care must also be taken to ensure that POF₂Br is free of any unreacted HOPOF₂ or HBr formed in the preparation of POF₂Br because hydrogen bromide reacts readily with $P_2O_3F_4$ to form POF₂Br and HOPOF₂. The ¹⁹F nmr and infrared spectra and molecular weight of $P_2O_3F_4$ all indicate that the compound can be obtained quite pure by the photolysis of POF₂Br with O₂. The observed ¹⁹F nmr spectrum agrees with that reported by Colburn and coworkers for pure $P_2O_3F_4$.^{15,16} In agreement with these workers only a two-line spectrum is observed if appreciable HOPOF₂ is present.

Acknowledgment.—This work was supported in part by the National Science Foundation (Grants GP-23098 and GP-8892) and by the Petroleum Research Fund of the American Chemical Society (Grant PRF-4563). The authors also thank D. T. Dix and the Dow Chemical Co. for the use of the nmr spectrometer. F. A. H. thanks Goodyear Atomic Corp. for a leave of absence.

(15) W. E. Hill, D. W. A. Sharp, and C. B. Colburn, J. Chem. Phys., 50, 612 (1969).

(16) These workers obtained the ¹⁹F nmr at 40 Mc in CFCl₂ and observed a six-line spectrum. At 56.4 Mc using a neat sample we observed further splitting and the question is under study.

Contribution from the Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010

Aquation Equilibrium and Isotopic Exchange of Chloride for Chloro(diethylenetriamine)platinum(II) Chloride¹

BY JOHN R. PAXSON AND DON S. MARTIN, JR.*2

Received December 18, 1970

The concept of the nucleophilicity parameter with its associated nucleophilic discrimination coefficient, since its inception by Belluco, et al.,³ in 1965, has served as an exceedingly useful means for rationalizing trends in the kinetics of ligand substitution reactions for squareplanar complexes. In addition, as Basolo, Gray, and Pearson⁴ proposed, the rates of chloride or bromide replacements from the $Pt(dien)X^+$ complexes where X is halide and dien is diethylenetriamine are especially informative about trends in entering-group and leavinggroup effects. It has been noted that plots of log k_v vs. n^{0}_{Pt} for iodide, bromide, and chloride displacements of the halide in these complexes have given an exceedingly good correlation⁵ (see Figure 1) with the exception of the replacement of chloride by chloride. This rate was originally determined by an isotopic exchange procedure in which chloride was separated from the com-

- (3) U. Belluco, L. Cattaline, F. Basolo, R. G. Pearson, and A. Turco, J. Amer. Chem. Soc., 87, 241 (1965).
- (4) F. Basolo, H. B. Gray, and R. G. Pearson, *ibid.*, **82**, 4200 (1960).
- (5) D. S. Martin, Jr., Inorg. Chim. Acta Rev., 1, 87 (1967).

Figure 1.—Dependence of the second-order rate constants (25° and zero ionic strength) for the replacement of Cl⁻ and Br⁻ ligands from Pt(dien)X⁺ upon the nucleophilic reactivity constants of the entering halide nucleophile: Δ , rate from data of Gray for $k_{\rm Cl}$, $^{\circ} \Delta$, present work.

plex by a silver chloride precipitation.⁶ Since work in this laboratory has shown that silver chloride precipitates sometimes catalyze the exchange of chloride ligands in platinum(II) complexes, the present study was undertaken to apply an ion-exchange technique for the chloride separation.

Experimental Section

The [Pt(dien)Cl]Cl was prepared by the method of Watt.⁷ Solutions of LiCl, which served as the source of free chloride and LiClO₄ for the control of ionic strength, were prepared from recrystallized reagents. These reagents were required for compatibility with dioxane scintillator solutions used for counting the β rays of ³⁶Cl in a Beckman Liquid Scintillation System, LS 200. In exchange experiments a solution of ³⁶Cl was added to a solution of [Pt(dien)Cl]Cl in LiCl and LiClO₄ which had attained equilibrium with respect to the aquation reaction

$$Pt(dien)Cl^{+} + H_2O \xrightarrow[k_-s]{R_8} Pt(dien)(H_2O)^{2+} + Cl^{-}$$
(1)

Exchange was quenched by passing aliquots through a 50-cm exchange column, of 14-mm i.d., containing Amberlite IRA 400 resin in the ClO_4^- form.

The aquo ligand in the product of reaction 1 is a measurably strong acid. However, the equilibrium constant is so small that it has not been possible by manual titration techniques to evaluate the concentration of the aquo complex. However, by using an automatic titrator (Radiometer SBR2c/ABU1c/TTA3) such titrations could be completed in 30 sec and the equilibrium constant has been determined directly.

Results and Discussion

The results of the evaluation of concentrations of $Pt(dien)(H_2O)^{2+}$ by titrations are included in Table I.

TABLE I Aquation Equilibrium for Pt(dien)Cl+

	Ionic		
Temp,	strength,	[Pt(dien)Cl+],	$10^{4}K_{s}$,
°C	M	$\mathbf{m}M$	M
25.0	0.100	0.5 - 5.0	1.96 ± 0.03
25.0	0.318	0.5 - 5.0	2.52 ± 0.03
35	0.100	0.5 - 2.5	2.09 ± 0.01
35	0.318	0.5 – 2.5	2.43 ± 0.04

The values at $\mu = 0.100 \ M$ have been used in treating the exchange data. The values at the two ionic strengths are consistent with anticipated behavior of the ionic activity coefficients.⁸ The K_s at 0.318 M is somewhat lower than the value of $3.7 \times 10^{-4} M$ esti-

- (6) H. B. Gray, J. Amer. Chem. Soc., 84, 1548 (1962).
- (7) G. W. Watt and W. A. Cude, Inorg. Chem., 7, 335 (1968).

(8) C. E. Crouthamel and D. S. Martin, Jr., J. Amer. Chem. Soc., 72, 1382 (1950).

⁽¹⁾ Work performed in the Ames Laboratory of the U. S. Atomic Energy Commission. Contribution No. 2848.

⁽²⁾ To whom correspondence should be addressed.